Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 101: 117645, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401456

RESUMO

All three possible sulfamate derivatives of the selective estrogen receptor modulator Raloxifene (bis-sulfamate 7 and two mono-sulfamates 8-9) were synthesized and evaluated as inhibitors of the clinical drug target steroid sulfatase (STS), both in cell-free and in cell-based assays, and also as estrogen receptor (ER) modulators. Bis-sulfamate 7 was the most potent STS inhibitor with an IC50 of 12.2 nM in a whole JEG3 cell-based assay, with the two mono-sulfamates significantly weaker. The estrogen receptor-modulating activities of 7-9 showed generally lower affinities compared to Raloxifene HCl, diethylstilbestrol and other known ligands, with mono-sulfamate 8 being the best ligand (Ki of 1.5 nM) for ERα binding, although 7 had a Ki of 13 nM and both showed desirable antagonist activity. The antiproliferative activities of the sulfamate derivatives against the T-47D breast cancer cell line showed 7 as most potent (GI50 = 7.12 µM), comparable to that of Raloxifene. Compound 7 also showed good antiproliferative potency in the NCI-60 cell line panel with a GI50 of 1.34 µM against MDA-MB-231 breast cancer cells. Stability testing of 7-9 showed that bis-sulfamate 7 hydrolyzed by desulfamoylation at a surprisingly rapid rate, initially leading selectively to 8 and finally to Raloxifene 3 without formation of 9. The mechanisms of these hydrolysis reactions could be extensively rationalized. Conversion of Raloxifene (3) into its bis-sulfamate (7) thus produced a promising drug lead with nanomolar dual activity as an STS inhibitor and ERα antagonist, as a potential candidate for treatment of estrogen-dependent breast cancer.


Assuntos
Neoplasias da Mama , Cloridrato de Raloxifeno , Ácidos Sulfônicos , Humanos , Feminino , Cloridrato de Raloxifeno/farmacologia , Receptor alfa de Estrogênio , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Esteril-Sulfatase , Neoplasias da Mama/tratamento farmacológico , Moduladores de Receptor Estrogênico
3.
BMC Cancer ; 23(1): 1053, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919708

RESUMO

BACKGROUND: Breast cancer is the most common malignancy globally, and is considered a major cause of cancer-related death. Tremendous effort is exerted to identify an optimal anticancer drug with limited side effects. The quinoline derivative RIMHS-Qi-23 had a wide-spectrum antiproliferative activity against various types of cancer cells. METHODS: In the current study, the effect of RIMHS-Qi-23 was tested on MCF-7 breast cancer cell line to evaluate its anticancer efficacy in comparison to the reference compound doxorubicin. RESULTS: Our data suggest an anti-proliferative effect of RIMHS-Qi-23 on the MCF-7 cell line with superior potency and selectivity compared to doxorubicin. Our mechanistic study suggested that the anti-proliferative effect of RIMHS-Qi-23 against MCF-7 cell line is not through targeted kinase inhibition but through other molecular machinery targeting cell proliferation and senescence such as cyclophlin A, p62, and LC3. CONCLUSION: RIMHS-Qi-23 is exerting an anti-proliferative effect that is more potent and selective than doxorubicin.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Proliferação de Células , Doxorrubicina/farmacologia , Linhagem Celular Tumoral
4.
Future Med Chem ; 15(20): 1885-1901, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814826

RESUMO

Imidazo[2,1-b]oxazole and 2,3-dihydroimidazo[2,1-b]oxazole ring systems are commonly employed in therapeutically active molecules. In this article, the authors review the utilization of these core scaffolds as chemotherapeutic agents from 2018 to 2022. These scaffolds possess many important biological activities including antimicrobial and anticancer, among others. This review covers their biological activities and structure-activity relationships. One of the most important drugs in this class of compounds is the antitubercular agent delamanid. In this paper, the compounds structure-activity relationship and preclinical and clinical trial data are thoroughly presented.


Assuntos
Antituberculosos , Oxazóis , Oxazóis/farmacologia , Antituberculosos/farmacologia , Relação Estrutura-Atividade
5.
Eur J Pharmacol ; 960: 176119, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37852569

RESUMO

Polycystic ovary syndrome (PCOS) is a prevalent hormonal disorder that affects women of reproductive age. It is characterized by abnormal production of androgens, typically present in small quantities in females. This study aimed to investigate the therapeutic potential of Irosustat (STX64), STX140, and compound 1G as new drug candidates for the treatment of letrozole-induced PCOS in female Wistar rats. 36 rats were divided into six groups of equal size. PCOS was induced in all groups, except the normal control group, by administering letrozole orally (1 mg/kg/day for 35 days). The onset of abnormal estrous cycle was confirmed by examining daily vaginal smears under a microscope. Subsequently, each rat group was assigned to a different treatment regimen, including one control group, one letrozole group, one metformin group (500 mg/kg/day) as a reference drug, and the other groups received a different drug candidate orally for 30 days. After treatment, blood collection was performed for biochemical measurements and determination of oxidative stress markers. The rats were dissected to separate ovaries and uterus for morphological, histological, and western blotting studies. Treatment with the drug candidates improved the ovaries and uterus weight measurements compared to the untreated PCOS group. The three tested drug candidates demonstrated promising improvements in lipid profile, blood glucose level, testosterone, progesterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and estradiol levels. In addition, western blotting confirmed their promising effects on Akt, mTOR, and AMPK-α pathways. This study led to the discovery of three promising drug candidates for the management of PCOS as alternatives to metformin.


Assuntos
Metformina , Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Metformina/efeitos adversos , Letrozol/efeitos adversos , Ratos Wistar
6.
Eur J Med Chem ; 261: 115779, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37776574

RESUMO

A series of 36 pyrazol-4-yl pyridine derivatives (8a-i, 9a-i, 10a-i, and 11a-i) was designed, synthesized, and evaluated for its antiproliferative activity over NCI-60 cancer cell line panel and inhibitory effect against JNK isoforms (JNK1, JNK2, and JNK3). All the synthesized compounds were tested against the NCI-60 cancer cell line panel. Compounds 11b, 11c, 11g, and 11i were selected to determine their GI50s and exerted a superior potency over the reference standard SP600125 against the tested cell lines. 11c showed a GI50 of 1.28 µM against K562 leukemic cells. Vero cells were used to assess 11c cytotoxicity compared to the tested cancer cells. The target compounds were tested against hJNK isoforms in which compound 11e exhibited the highest potency against JNK isoforms with IC50 values of 1.81, 12.7, and 10.5 nM against JNK1, JNK2, and JNK3, respectively. Kinase profiling of 11e showed higher JNK selectivity in 50 kinase panels. Compounds 11c and 11e showed cell population arrest at the G2/M phase, induced early apoptosis, and slightly inhibited beclin-1 production at higher concentrations in K562 leukemia cells relative to SP600125. NanoBRET assay of 11e showed intracellular JNK1 inhibition with an IC50 of 2.81 µM. Also, it inhibited CYP2D6 and 3A4 with different extent and its hERG activity showed little cardiac toxicity with an IC50 of 4.82 µM. hJNK3 was used as a template to generate the hJNK1 crystal structure to explore the binding mode of 11e (PDB ID: 8ENJ) with a resolution of 2.8 °A and showed a typical type I kinase inhibition against hJNK1. Binding energy scores showed that selectivity of 11e towards JNK1 could be attributed to additional hydrophobic interactions relative to JNK3.


Assuntos
Azóis , Proteínas Quinases JNK Ativadas por Mitógeno , Animais , Chlorocebus aethiops , Células Vero , Azóis/farmacologia , Isoformas de Proteínas , Piridinas/farmacologia , Proliferação de Células
7.
Eur J Med Chem ; 261: 115796, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37708796

RESUMO

FMS kinase is a type III tyrosine kinase receptor that plays a central role in the pathophysiology and management of several diseases, including a range of cancer types, inflammatory disorders, neurodegenerative disorders, and bone disorders among others. In this review, the pathophysiological pathways of FMS kinase in different diseases and the recent developments of its monoclonal antibodies and inhibitors during the last five years are discussed. The biological and biochemical features of these inhibitors, including binding interactions, structure-activity relationships (SAR), selectivity, and potencies are discussed. The focus of this article is on the compounds that are promising leads and undergoing advanced clinical investigations, as well as on those that received FDA approval. In this article, we attempt to classify the reviewed FMS inhibitors according to their core chemical structure including pyridine, pyrrolopyridine, pyrazolopyridine, quinoline, and pyrimidine derivatives.


Assuntos
Neoplasias , Humanos , Relação Estrutura-Atividade , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo
8.
Mol Biochem Parasitol ; 256: 111582, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37562558

RESUMO

Acanthamoeba are known to cause a vision threatening eye infection typically due to contact lens wear, and an infection of the central nervous system. The ability of these amoebae to switch phenotypes, from an active trophozoite to a resistant cyst form is not well understood; the cyst stage is often resistant to chemotherapy, which is of concern given the rise of contact lens use and the ineffective disinfectants available, versus the cyst stage. Herein, for the first time, a range of raloxifene sulfonate/sulfamate derivatives which target nucleotide pyrophosphatase/phosphodiesterase enzymes, were assessed using amoebicidal and excystation tests versus the trophozoite and cyst stage of Acanthamoeba. Moreover, the potential for cytopathogenicity inhibition in amoebae was assessed. Each of the derivatives showed considerable anti-amoebic activity as well as the ability to suppress phenotypic switching (except for compound 1a). Selected raloxifene derivatives reduced Acanthamoeba-mediated host cell damage using lactate dehydrogenase assay. These findings suggest that pyrophosphatase/phosphodiesterase enzymes may be valuable targets against Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Animais , Cloridrato de Raloxifeno/farmacologia , Ácidos Sulfônicos/farmacologia , Trofozoítos , Alcanossulfonatos/farmacologia , Diester Fosfórico Hidrolases/farmacologia
9.
Antibiotics (Basel) ; 12(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36978428

RESUMO

Pathogenic Acanthamoeba produce keratitis and fatal granulomatous amoebic encephalitis. Treatment remains problematic and often ineffective, suggesting the need for the discovery of novel compounds. For the first time, here we evaluated the effects of the anticancer drugs Irosustat and STX140 alone, as well as their nanoformulations, against A. castellanii via amoebicidal, excystment, cytopathogenicity, and cytotoxicity assays. Nanoformulations of the compounds were successfully synthesized with high encapsulation efficiency of 94% and 82% for Irosustat and STX140, respectively. Nanoparticles formed were spherical in shape and had a unimodal narrow particle size distribution, mean of 145 and 244 nm with a polydispersity index of 0.3, and surface charge of -14 and -15 mV, respectively. Irosustat and STX140 exhibited a biphasic release profile with almost 100% drug released after 48 h. Notably, Irosustat significantly inhibited A. castellanii viability and amoebae-mediated cytopathogenicity and inhibited the phenotypic transformation of amoebae cysts into the trophozoite form, however their nanoformulations depicted limited effects against amoebae but exhibited minimal cytotoxicity when tested against human cells using lactate dehydrogenase release assays. Accordingly, both compounds have potential for further studies, with the hope of discovering novel anti-Acanthamoeba compounds, and potentially developing targeted therapy against infections of the central nervous system.

10.
Eur J Med Chem ; 246: 114958, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470105

RESUMO

A series of adamantyl carboxamide derivatives containing sulfonate or sulfonamide moiety were designed as multitargeted inhibitors of ectonucleotide pyrophosphatases/phosphodiesterases (NPPs) and carbonic anhydrases (CAs). The target compounds were investigated for their antiproliferative activity against NCI-60 cancer cell lines panel. Three main series composed of 3- and 4-aminophenol, 4-aminoaniline, and 5-hydroxyindole scaffolds were designed based on a lead compound (A). Compounds 1e (benzenesulfonyl) and 1i (4-fluorobenzenesulfonyl) of 4-aminophenol backbone exhibited the most promising antiproliferative activity. Both compounds exhibited a broad-spectrum and potent inhibition against all the nine tested cancer subtypes. Both compounds showed nanomolar IC50 values over several cancer cell lines that belong to leukemia and colon cancer such as K-562, RPMI-8226, SR, COLO 205, HCT-116, HCT-15, HT29, KM12, and SW-620 cell lines. Compounds 1e and 1i induced apoptosis in K-562 leukemia cells in a dose-dependent manner. Compound 1i showed the highest cytotoxic activity with IC50 value of 200 nM against HT29 cell line. In addition, compounds 1e and 1i were tested against normal breast cells (HME1) and normal skin fibroblast cells (F180) and the results revealed that the compounds are safe toward normal cells compared to cancers cells. Enzymatic assays against NPP1-3 and carbonic anhydrases II, IX, and XII were performed to investigate the possible molecular target(s) of compounds 1e and 1i. Furthermore, a molecular docking study was performed to predict the binding modes of compounds 1e and 1i in the active site of the most sensitive enzymes subtypes.


Assuntos
Antineoplásicos , Anidrases Carbônicas , Leucemia , Humanos , Antineoplásicos/química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
11.
Bioorg Med Chem ; 69: 116894, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35764033

RESUMO

The design, synthesis, and biological activities of a new series of pyrazole derivatives are reported. The target compounds 1a-1w were initially investigated against NCI-60 cancer cell lines. Compounds 1f, 1h, 1k, and 1v exerted the highest anti-proliferative activity over the studied panel of cancer cell lines. Compound 1f showed the most potent activity, and it is more potent than sorafenib in 29 cancer cell lines of different types and more potent than SP600125 against almost all the tested cancer cell lines. It also exerted sub-micromolar IC50 values (0.54-0.98 µM) against nine cell lines. Moreover, the 23 target compounds were tested against Hep3B and HepG2 hepatocellular carcinoma cell lines, of which compounds 1b, 1c, and 1h showed the strongest anti-proliferative activity. The most potent anticancer compounds (1b, 1c, 1f, and 1h) demonstrated a high selectivity towards cancer cells vis-à-vis normal cells. Compounds1f and 1h induced apoptosis and mild necrosis upon testing against RPMI-8226 leukemia cells. Kinase profiling of this series led to the discovery of two potent and selective JNK3 inhibitors, compounds 1c and 1f with an IC50 values of 99.0 and 97.4 nM, respectively. Both compounds showed a good inhibitory effect against JNK3 kinase in the whole-cell NanoBRET assay. This finding was further supported through molecular modeling studies with the JNK3 binding site. Moreover, compounds 1c and 1f demonstrated a very weak activity against CYP 2D6, CYP 3A4, and hERG ion channels.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Pirazóis/química , Relação Estrutura-Atividade
12.
Eur J Med Chem ; 238: 114434, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551038

RESUMO

This article describes the design, synthesis, and biological screening of a new series of diarylurea and diarylamide derivatives including quinoline core armed with dimethylamino or morpholino side chain. Fifteen target compounds were selected by the National Cancer Institute (NCI, USA) for in vitro antiproliferative screening against a panel of 60 cancer cell lines of nine cancer types. Compounds 1j-l showed the highest mean inhibition percentage values over the 60-cell line panel at 10 µM with broad-spectrum antiproliferative activity. Subsequently, compounds 1j-l were subjected to a dose-response study to measure their GI50 and total growth inhibition (TGI) values against the cell lines. Three of the tested molecules exerted higher potency against most of the cell lines than the reference drug, sorafenib. Compound 1l indicated a higher potency than sorafenib against 53 of tested cancer cell lines. Compounds 1j-l demonstrated promising selectivity against cancer cells than normal cells. Moreover, compound 1l induced apoptosis and necrosis in RPMI-8226 cell line in a dose-dependent manner. In addition, compounds 1j-l were tested against C-RAF kinase as a potential molecular target. The three compounds showed high potency, and the most potent C-RAF kinase inhibitor was compound 1j with an IC50 value of 0.067 µM. In addition, Compounds 1j-l were further tested at 1 µM concentration against a panel of another twelve kinases and they showed a high selectivity for C-RAF kinase. Molecular modeling studies were performed to illuminate on the putative binding interactions of these motifs in the active site of C-RAF kinase. Additional studies were conducted to measure aqueous solubility, partition coefficient, and Caco-2 permeability of the most promising derivatives.


Assuntos
Antineoplásicos , Hidroxiquinolinas , Quinolinas , Antineoplásicos/química , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidroxiquinolinas/farmacologia , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-raf/farmacologia , Quinolinas/química , Sorafenibe/farmacologia , Relação Estrutura-Atividade
13.
Eur J Pharm Sci ; 171: 106115, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995782

RESUMO

In the current article, we introduce design of a new series of 4-(imidazol-5-yl)pyridines with improved anticancer activity and selective B-RAFV600E/p38α kinase inhibitory activity. Based on a previous work, a group of structural modifications were applied affording the new potential antiproliferative agents. Towards extensive biological assessment of the target compounds, an in vitro anticancer assay was conducted over NCI 60-cancer cell lines panel representing blood, lung, colon, CNS, skin, ovary, renal, prostate, and breast cancers. Compounds 7c, 7d, 8b, 9b, 9c, 10c, 10d, and 11b exhibited the highest potency among the tested compounds and demonstrated sub-micromolar or one-digit micromolar GI50 values against the majority of the employed cell lines. Compound 10c emerged as the most potent agent with nano-molar activity over most of the cells and incredible activity against melanoma (MDA-MB-435) cell line (GI50 70 nM). It is much more potent than sorafenib, the clinically used anticancer drug, against almost all the NCI-60 cell lines. Further cell-based mechanistic assays showed that compound 10c induced cell cycle arrest and promoted apoptosis in K562, MCF-7 and HT29 cancer cell lines. In addition, compound 10c induced autophagy in the three cancer cell lines. Kinase profiling of 10c showed its inhibitory effects and selectivity towards B-RAFV600E and p38α kinases with IC50 values of 1.84 and 0.726 µM, respectively. Docking of compound 10c disclosed its high affinity in the kinases pockets. Compound 10c represent a promising anticancer agent, that could be optimized in order to improve its kinase activity aiming at developing potential anticancer agents. The conformational stability of compound 10c in the active site of B-RAFV600E and p38α kinases was studied by applying molecular dynamic simulation of the compound in the two kinases for 600 ns in comparison to the native ligands.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Piridinas/farmacologia , Relação Estrutura-Atividade
14.
Molecules ; 27(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011562

RESUMO

Pyrazole has been recognized as a pharmacologically important privileged scaffold whose derivatives produce almost all types of pharmacological activities and have attracted much attention in the last decades. Of the various pyrazole derivatives reported as potential therapeutic agents, this article focuses on pyrazole-based kinase inhibitors. Pyrazole-possessing kinase inhibitors play a crucial role in various disease areas, especially in many cancer types such as lymphoma, breast cancer, melanoma, cervical cancer, and others in addition to inflammation and neurodegenerative disorders. In this article, we reviewed the structural and biological characteristics of the pyrazole derivatives recently reported as kinase inhibitors and classified them according to their target kinases in a chronological order. We reviewed the reports including pyrazole derivatives as kinase inhibitors published during the past decade (2011-2020).


Assuntos
Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/tendências , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Desenvolvimento de Medicamentos/história , Inibidores Enzimáticos/classificação , Inibidores Enzimáticos/uso terapêutico , História do Século XXI , Humanos , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/farmacologia , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
15.
Molecules ; 26(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34885957

RESUMO

HER4 is a receptor tyrosine kinase that is required for the evolution of normal body systems such as cardiovascular, nervous, and endocrine systems, especially the mammary glands. It is activated through ligand binding and activates MAPKs and PI3K/AKT pathways. HER4 is commonly expressed in many human tissues, both adult and fetal. It is important to understand the role of HER4 in the treatment of many disorders. Many studies were also conducted on the role of HER4 in tumors and its tumor suppressor function. Mostly, overexpression of HER4 kinase results in cancer development. In the present article, we reviewed the structure, location, ligands, physiological functions of HER4, and its relationship to different cancer types. HER4 inhibitors reported mainly from 2016 to the present were reviewed as well.


Assuntos
Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-4/metabolismo , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-4/análise , Receptor ErbB-4/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
16.
Molecules ; 26(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770896

RESUMO

A series of thirteen triarylpyrazole analogs were investigated as inhibitors of lipopolysaccharide (LPS)-induced prostaglandin E2 (PGE2) and nitric oxide (NO) production in RAW 264.7 macrophages. The target compounds 1a-m have first been assessed for cytotoxicity against RAW 264.7 macrophages to determine their non-cytotoxic concentration(s) for anti-inflammatory testing to make sure that the inhibition of PGE2 and NO production would not be caused by cytotoxicity. It was found that compounds 1f and 1m were the most potent PGE2 inhibitors with IC50 values of 7.1 and 1.1 µM, respectively. In addition, these compounds also showed inhibitory effects of 11.6% and 37.19% on LPS-induced NO production, respectively. The western blots analysis of COX-2 and iNOS showed that the PGE2 and NO inhibitory effect of compound 1m are attributed to inhibition of COX-2 and iNOS protein expression through inactivation of p38.


Assuntos
Anti-Inflamatórios/farmacologia , Dinoprostona/biossíntese , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico/biossíntese , Pirazóis/farmacologia , Animais , Anti-Inflamatórios/química , Relação Dose-Resposta a Droga , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Estrutura Molecular , Pirazóis/química , Células RAW 264.7 , Relação Estrutura-Atividade
17.
Eur J Med Chem ; 224: 113674, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237622

RESUMO

This article reports on novel imidazothiazole derivatives as first-in-class potent and selective ErbB4 (HER4) inhibitors. There are no other reported selective inhibitors of this kinase in the literature, that's why they are considered as first-in-class. In addition, none of the reported non-selective ErbB4 inhibitors possesses imidazothiazole nucleus in its structure. Therefore, there is novelty in this work in both kinase selectivity and chemical structure. Compounds Ik and IIa are the most potent ErbB4 kinase inhibitor (IC50 = 15.24 and 17.70 nM, respectively). Compound Ik showed promising antiproliferative activity. It is selective towards cancer cell lines than normal cells. Its ability to penetrate T-47D cell membrane and inhibit ErbB4 kinase inside the cells has been confirmed. Moreover, both compound Ik and IIa have additional merits such as weak potency against hERG ion channels and against CYP 3A4 and 2D6. Molecular docking and dynamic simulation studies were carried out to explain binding interactions.


Assuntos
Inibidores de Proteínas Quinases/química , Receptor ErbB-4/antagonistas & inibidores , Tiazóis/química , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imidazóis/química , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptor ErbB-4/metabolismo , Relação Estrutura-Atividade , Tiazóis/metabolismo , Tiazóis/farmacologia
18.
J Med Chem ; 64(10): 6877-6901, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33999621

RESUMO

BRAF is an important component of MAPK cascade. Mutation of BRAF, in particular V600E, leads to hyperactivation of the MAPK pathway and uncontrolled cellular growth. Resistance to selective inhibitors of mutated BRAF is a major obstacle against treatment of many cancer types. In this work, a series of new (imidazo[2,1-b]thiazol-5-yl)pyrimidine derivatives possessing a terminal sulfonamide moiety were synthesized. Pan-RAF inhibitory effect of the new series was investigated, and structure-activity relationship is discussed. Antiproliferative activity of the target compounds was tested against the NCI-60 cell line panel. The most active compounds were further tested to obtain their IC50 values against cancer cells. Compound 27c with terminal open chain sulfonamide and 38a with a cyclic sulfamide moiety showed the highest activity in enzymatic and cellular assay, and both compounds were able to inhibit phosphorylation of MEK and ERK. Compound 38a was selected for testing its in vivo activity against melanoma. Cellular and animal activities are reported.


Assuntos
Imidazóis/química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Tiazóis/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Meia-Vida , Humanos , Imidazóis/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/química , Tiazóis/metabolismo , Transplante Heterólogo
19.
Expert Opin Ther Pat ; 31(6): 453-472, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33783295

RESUMO

Introduction: Steroid sulfatase (STS) enzyme is responsible for transforming the inactive sulfate metabolites of steroid sex hormones into the active free steroids. Both the deficiency and the over-expression of STS are associated with the pathophysiology of certain diseases. This article provides the readership with a comprehensive review about STS enzyme and its recently reported inhibitors.Areas covered: In the present article, we reviewed the structure, location, and substrates of STS enzyme, physiological functions of STS, and disease states related to over-expression or deficiency of STS enzyme. STS inhibitors reported during the last five years (2016-present) have been reviewed as well.Expert opinion: Irosustat is the most successful STS inhibitor drug candidate so far. It is currently under investigation in clinical trials for treatment of estrogen-dependent breast cancer. Non-steroidal sulfamate is the most favorable scaffold for STS inhibitor design. They can be beneficial for the treatment of hormone-dependent cancers and neurodegenerative disorders without significant estrogenic side effects. Moreover, dual-acting molecules (inhibitors of STS + another synergistic mechanism) can be therapeutically efficient.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Esteril-Sulfatase/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Inibidores Enzimáticos/administração & dosagem , Feminino , Humanos , Patentes como Assunto , Esteril-Sulfatase/metabolismo , Ácidos Sulfônicos/administração & dosagem , Ácidos Sulfônicos/farmacologia
20.
Eur J Med Chem ; 217: 113339, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33744686

RESUMO

Ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs) together with nucleoside triphosphate diphosphohydrolases (NTPDases) and alkaline phosphatases (APs) are nucleotidases located at the surface of the cells. NPP1 and NPP3 are important members of NPP family that are known as druggable targets for a number of disorders such as impaired calcification, type 2 diabetes, and cancer. Sulfonylurea derivatives have been reported as antidiabetic and anticancer agents, therefore, we synthesized and investigated series of sulfonylurea derivatives 1a-m possessing pyrrolo[2,3-b]pyridine core as inhibitors of NPP1 and NPP3 isozymes that are over-expressed in cancer and diabetes. The enzymatic evaluation highlighted compound 1a as selective NPP1 inhibitor, however, 1c was observed as the most potent inhibitor of NPP1 with an IC50 value of 0.80 ± 0.04 µM. Compound 1l was found to be the most potent and moderately selective inhibitor of NPP3 (IC50 = 0.55 ± 0.01 µM). Furthermore, in vitro cytotoxicity assays of compounds 1a-m against MCF-7 and HT-29 cancer cell lines exhibited compound 1c (IC50 = 4.70 ± 0.67 µM), and 1h (IC50 = 1.58 ± 0.20 µM) as the most cytotoxic compounds against MCF-7 and HT-29 cancer cell lines, respectively. Both of the investigated compounds showed high degree of selectivity towards cancer cells than normal cells (WI-38). Molecular docking studies of selective and potent enzyme inhibitors revealed promising mode of interactions with important binding sites residues of both isozymes i.e., Thr256, His380, Lys255, Asn277 residues of NPP1 and His329, Thr205, and Leu239 residues of NPP3. In addition, the most potent antiproliferative agent, compound 1h, doesn't produce hypoglycemia as a side effect when injected to mice. This is an additional merit of the promising compound 1h.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Piridinas/farmacologia , Pirofosfatases/antagonistas & inibidores , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Diester Fosfórico Hidrolases/metabolismo , Piridinas/síntese química , Piridinas/química , Pirofosfatases/metabolismo , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA